Tag Archive | "GlideScope Ranger"

See Cords Around Corners

Tags: , , ,


I knew it was going to be a tough intubation. He was a bear of a man, well over 300 pounds. But compounding the problem was his tiny mouth and diminutive jaw—barely enough mandible to catch on the top of his C-collar. Respirations were agonal and sats were on the verge of precipitous decline. As I scissorred open the teeth, I was dreading the expected view of redundant tissue, blood and saliva, and hoping for the elusive larynx.

The adult Glidescope blades come in two sizes, a 3 and a 4. The 4 is what I use for nearly all adults and is listed as 90 pounds and up. Image Courtesy Graham Snyder, MD

I placed the 4 Mac into the mouth, but it was not good. The man’s jaw and mouth were barely large enough to place the blade between the teeth, yet his tongue seemed gargantuan. The thickness of his torso plus the very real fear of worsening a possible c-spine injury resulted in a view of only a pink wall of tissue.

“Want me to get the scope?” queried the respiratory therapist.

“This is not a candidate; there’s too much blood,” I responded, envisioning the futility of attempting to snake a tiny flexible fiberoptic wire through the patient’s nose or into his mouth–the tissue compressed flat in his supine position and the tiniest droplet of blood or saliva leading to complete loss of view.

“Not the flexible fiberscope, the video laryngoscope,” The respiratory therapist clarified as he placed the plastic blade in my hand and turned the video screen in my direction.

I had picked up the Glidescope a number of times at conferences when walking by promotional booths. On a dry plastic mannequin head, it seemed to work spectacularly. The view of the cords was superior to all but the easiest of direct laryngoscopy, and the force needed to obtain that view was a fraction of that needed normally.

But would it work in a high-pressure, high-stakes clinical setting?

The patient was difficult to bag so I had about 60 seconds before I would need a rescue device or proceed to cricothyroidotomy.

I gently inserted the blade sliding down the center of the tongue and in seconds was greeted with a textbook view of not only the larynx, but the arytenoids and the aryepiglottic folds as well! There was four times the amount of information I needed to place an ET tube normally. I grabbed the endotracheal tube, which the RT had preloaded on the strange glidescope stylet, not knowing that my challenge had just begun.

For the past 11 years, I’ve been giving lectures on management of the difficult airway to the right students at the wrong time in their career. Learning direct laryngoscopy and effective placement of an endotracheal tube is a challenge in itself. When you add the extreme stress and anxiety of a horrifically unstable patient, it’s a wonder we can pull it off at all. However, with the combination of good lectures, operating room and/or simulation time, we all learn the art. Once you become proficient, in truth, it’s not that hard…except when it is.

The majority of difficult airways occur because of an inability to visualize the vocal cords. Usually, this is not a surprise. The causes are innumerable and sometimes additive. Even before beginning the procedure, when a patient has a small mouth, a large tongue, and a short jaw, you should anticipate a difficult airway and make plans for managing it.

There are plenty of other options, including lighted stylets, retrograde intubation and LMAs. The most important thing is that you be well practiced in the technique so that when the time comes, when the stakes are the highest, you are relaxed, confident and proficient.

This is just as true when using video laryngoscopy, and is often ignored because at first glance it seems both very similar in the technique we are all confident in (direct laryngoscopy) and is easier than direct laryngoscopy. This is true, BUT if you do not make the appropriate modifications to your technique, you will at best struggle and at worst have a failed airway.

Video laryngoscopes allow for spectacular visualization of the larynx often in cases where direct laryngoscopy would be extremely difficulty or impossible. This is best demonstrated by a patient with a small mouth and big tongue, which unfortunately is the case with all infants.

The magic of the Glidescope is you do not have to physically look in the mouth (only at the video screen), so intubation can still be accomplished on these tiny airways as demonstrated below in this 16-month infant simulator. See the video and photograph below.

Intubation can still be accomplished on tiny airways, as demonstrated in this 16-month infant simulator. Photo Courtesy Graham Snyder, MD

Click here for video.

Step 1: Know your Equipment.
There are a variety of different video laryngoscopes, each of which have its own unique performance characteristics. At our institution, we use the Glidescope Ranger. But no matter what you use, you must learn the unique geometry of the blades and significantly different techniques for intubation before the time of crisis. This can be accomplished with a stable patient and bedside supervision with an experienced practitioner—and ideally complemented by both supervised and independent practice using human patient simulators or airway task trainers.

Step 2: Assemble the Equipment Correctly.
There are really only three pieces of equipment. The wand (light source and fiberoptic camera), the plastic blade cover and the video screen. The wand plugs into the video screen intuitively and then the blade cover slides onto the wand with a definitive click. The wand must go in straight into the plastic sheath. If the wand is placed into the blade cover rotating 90 degrees, the screen will be 90 degrees off but in addition there will be extremely distracting glare. Make sure that the writing on the blade cover aligns with the writing on the wand. If you don’t, when you look in the mouth you will not be able to tell whether the blurry spots on the video screen are from saliva obscuring the view or from the plastic refracting.

Step 3: Don’t Look in the Mouth.
The Glidescope looks very similar to a Macintosh laryngoscope, leading people to mistakenly attempt to use it as one but everything is different. For one, the basic maneuver is more of a gentle straight up lift than the diagonal forward movement used in direct laryngoscopy. Also, much more importantly, getting the camera to find the cords has nothing to do with the maneuver needed to directly visualize the cords. Keep your eyes on the camera once you are inside the mouth and guide the video screen toward the cords.

Step 4: Use the Steel Stylet that Comes with the Glidecope.
You will be advancing the tube around and over the tongue and must maintain the curve of the original stylet or else the tube will not be able to find the larynx. If you use a normal stylet, it will get straightened out by the time you get to the larynx and will repeatedly, (and extraordinarily frustratingly) pass into the esophagus. You will no longer have the angle needed to pass into the cords.

Correct Technique

Incorrect Technique

Step 5: Don’t Get too Close to the Cords.
The temptation when using the Glidescope (because you obtain such a gorgeous video of the cords) is to press the camera close to the larynx. If the larynx fills the entire video screen, then the tip of your blade is millimeters away from the larynx. However, wherever the camera is, the tube will come in just below that point so if you’re abutting the cords already, when you pass the tube it will pass just below the cords (into the esophagus). If, however, you back away a little from the cords, then, because of the angle of the stylet, once the tube passes in front of the blade it will angle up and smoothly in between the cords.

Incorrect Technique

Correct Technique

Step 6: Back the Stylet out while Advancing the Tube.
The stylet is quite rigid steel and has nearly a 90-degree curve in it. This works perfectly for making the turn around the tongue and effortlessly going through the cords. However, since the trachea does not have a curve in it, as soon as the tip of the tube is placed between the cords, the stylet must be backed out to allow it to pass. Conveniently, there is a little flip top on the end of the stylet perfectly positioned for your thumb to kick it back and the tube to slide into the trachea. This is not optional. It is physically impossible to pass the tube with the stylet in place, so once the tip is between the cords, you or your assistant must remove the stylet.

Remove the stylet to secue the airway. Photo Courtesy Graham Snyder, MD

Conclusion
In my difficult case, once I took the respiratory therapist’s suggestion, I found the trauma patient’s vocal cords in seconds and with a sigh of relief advanced the tip of the orotracheal tube between the cords. I was puzzled briefly by the resistance I felt when I attempted to advance the tube, when the paramedic who brought the patient in (who was also watching the screen) reminded me, “You have to remove the stylet or it won’t advance.” He leaned forward, and like lighting a Zippo, he flicked the stylet lever (see image at left) backwards and the tube effortlessly advanced securing the airway.

When properly used, the video laryngoscope can transform extremely difficult intubations into nearly effortless lifesaving maneuvers and can be used in easy intubations as a safe and controlled way to teach the art and the science of orotracheal intubation.

Post to Twitter

Graham E. Snyder, MD FACEP

Graham E. Snyder, MD, FACEP, is medical director for the Center for Innovative Learning at WakeMed Health and Hospitals.

More Posts

Trauma Airway Intubation Is a Team Effort

Tags: , , , , , , , , , , , , , , , , , , , ,


Field intubation of trauma patients should be a team effort.

Have a checklist for intubation of trauma patients, and assign your assisting colleagues a role to ensure success on the first attempt. Photo Courtesy Christopher T. Stephens, MD, MS, NREMPT-P


Greetings colleagues!

As the second part of this three-part series on the traumatic airway, we will now focus on intubating the trauma patient case that was introduced in the previous article, “Managing the Traumatic Airway.”

(Missed the first part of this three-part series? Click here to read Part I.)

Why is intubation of trauma patients being scrutinized across the nation, you ask? As an instructor of trauma airway management, I can assure you that it isn’t because you as field providers don’t know how to effectively intubate! In short, there are studies (whether sound or not) that are suggesting worse outcomes in patients who are intubated in the field.

So what, you ask? Sicker patients are sicker and need an endotracheal tube, right? Everyone agrees that there are some patients out there who just need to be intubated. Obstructed airways, vomit, blood and poor anatomy make traumatic airways challenging to manage in the field. In fact, these airways can be challenging in the trauma centers as well. Many patients simply can’t be oxygenated and ventilated effectively with a supraglottic airway—a or bag-valve mask (BVM) and oral airway for that matter, right? These are the cases that get our sympathetic nervous system going and put us in that position where “critical decision making” becomes extremely important.

The Intubation
So you have decided to intubate this trauma patient—who is 110 kg and looks like a small linebacker for your local professional football team. Here are some questions for you:

1. What help do you have?
2. What environment are you in (i.e., street, ditch or ambulance)?
3. Are you able to effectively oxygenate/ventilate this patient with basic tools as discussed previously?
4. Will you plan to do a blind nasal intubation or drug-facilitated oral intubation (rapid sequence intubation/RSI)?

These are some of the questions that must be thought about ahead of time, and a plan must have already been made so that the EMS team can be successful.

I like to teach EMTs and paramedics to think like pilots. Have a checklist and start at the top and work your way down. You will never miss anything this way. Assign your assisting colleagues a role to get the patient intubated successfully on the first attempt.

Ideally, you should have four EMS providers to intubate a trauma patient. The team leader is the one intubating. At this point, the team leader should be assisting the patient’s airway and pre-oxygenating with 100% oxygen via a BVM. Pre-oxygenation is VERY important. It will buy you more time to get that tube in the right hole. You should do this for blind nasal intubations as well. Trauma patients tend to desaturate at an alarming rate because most have been hypoventilating to this point due to pain, semiconsciousness, pneumo- or hemothoraces, etc. And remember, all trauma patients are full stomachs. Some have already aspirated prior to your arrival, which also works against you. All of these conditions make your intubation attempts less forgiving, and you must be prepared to act quickly if the patient becomes challenging and/or desaturates.

Once you have pre-oxygenated your patient for at least 60 seconds, attempt your intubation. If it’s a blind nasal intubation, you may have more time because the patient is still breathing. You also have the luxury to just assist them to the hospital if it fails. If you’re planning a drug-facilitated intubation, then all bets are off. Once you have decided to push drugs, you had better have your skills, colleagues and equipment ready for action.

During pre-oxygenation of the patient, the team leader must assign roles. The second medic will draw up and be responsible for pushing drugs, then handing supplies to the intubating team leader (i.e., endotracheal tube, suction, bougie, another blade, video laryngoscope, etc).

The third provider is responsible for removing the front of the cervical collar (yes, the front of the c-collar MUST be removed PRIOR to laryngoscopy) and holding cricoid pressure correctly. Note: Cricoid pressure needs to be learned correctly and practiced. Some protocols have done away with cricoid pressure; I feel that it’s still an important tool to be used in traumatic airways with full stomachs.

The fourth provider will hold in-line manual stabilization of the cervical spine throughout the intubation. When the team leader states that they’re ready, the second medic should push the appropriate drugs and appropriate doses. This is a decision that has to be made correctly and using expert paramedic critical decision techniques. Understanding the physiology/pharmacology of rapid sequence intubation (RSI) is as important as the skill itself. How sick is the patient? What are their vital signs prior to pushing drugs? Do they have pulses (central or peripheral?) Are they in shock? Do they have signs of a head injury?

Which of roles below do you most often play during the field intubation of a trauma patient?

View Results

Loading ... Loading ...

These are questions that must be answered during a rapid primary and secondary survey while preparing to intubate the patient. Is the patient combative due to shock, head injury, alcohol/drugs, or all of the above? If able, try and get a baseline set of vital signs prior to pushing drugs. This will help guide your drug choice and dosing. Drug selection and dosing is an EXTREMELY important topic for trauma patients and should be discussed at length with your medical director and training supervisors. Anesthetic agents are powerful and can make patients worse if used incorrectly.

There are many issues to think about when dealing with a traumatic airway, and hopefully you will have some time to work through a good plan of action so if things start to go wrong, your checklist and plan will be there for you to fall back on.

Once the patient has been relaxed with succinylcholine or an alternative paralytic agent, the team leader should perform their laryngoscopy with the blade they’re most comfortable using. Remember, your first shot is always your best shot! I teach trauma airways with a Macintosh 3 blade for most adults because I find it easier for medics and trainees to keep the tongue out of the way with the wider Macintosh blade.

As an alternative, you may also use a video laryngoscope, such as the Glidescope Ranger, for your intubation. The Glidescope Ranger has been useful for managing traumatic airways. It allows everyone assisting to see what the team leader is seeing, which can therefore help them anticipate what the team leader may need to get the job done, such as suction, bougie or a smaller endotracheal tube. As with any piece of airway equipment, there’s a learning curve with video laryngoscopy. You must practice it on mannequins, cadavers in airway labs and on live patients in the operating room, if possible.

I want to say a few words about the intubating stylet or bougie. Since I manage traumatic airways for a living, in my opinion, the bougie is the single most important piece of intubating equipment. This little flexible styllete has been my savior during many a difficult airway in the trauma center. That being said, a bougie and video laryngoscope is a VERY effective combination of equipment to intubate the trauma patient. I encourage each of you to grab an airway mannequin, a bougie and a demo Glidescope Ranger and practice this technique. This is going to be the wave of the future for airway management, especially in the uncontrolled field environment, where help can be lacking.

If you can’t see a view of the vocal cords or confirm the tube to be in the esophagus, you must go to Plan B. This may include changing blades, switching to a video laryngoscope, or perhaps allowing another, more-experienced airway operator to assist. Do NOT forget to attempt oxygenating and ventilating the patient with an oral/nasal airway and BVM between intubation attempts. Do your best to get the patient as close to 100% oxygen saturation as possible prior to your next intubation attempt.

If the second attempt fails, consider either placing a supraglottic airway device or simply performing BVM assisted ventilations with an oral/nasal airway throughout transport. Remember, this technique sometimes requires two rescuers to perform adequately. If you can’t intubate and can’t ventilate the patient, you must proceed to a surgical airway—either a needle or open surgical cricothyroidotomy. We will discuss this in the next article.

The Confirmation
Once the endotracheal tube is placed, it’s important for tube confirmation to be established. This can be done in many ways. Chest rise and bilateral breath sounds are important but can sometimes be misleading. If the patient is warm and still perfusing, tube fogging should be noted, as well as end-tidal carbon dioxide (ETCO2). Either an easy cap (calorimetric) ETCO2 or continuous waveform capnography should be employed as the gold standard for tube confirmation. Continuous waveform capnography ideally should be used by every medic unit that’s intubating patients in the field. This will be discussed further in the next article.

Once the correct tube location is confirmed, be certain that the tube is secured well, the cervical collar is replaced, and the tube location is reassessed after securing because tubes sometimes migrate into the right mainstem bronchus when being secured. At this point, you’re still not out of the woods! Now that you have successfully intubated the patient, you must worry about their physiology while transporting. This is a point that many field providers dismiss when managing airways in the field and a topic that may prevent medical directors from removing intubation from protocols around the nation. So there you have it—four providers ideally to get the task done correctly!

Stay tuned for the final article in this series of managing the traumatic airway.

Do you have access to a video laryngoscope?

View Results

Loading ... Loading ...

Post to Twitter

Christopher T. Stephens, MD, MS, NREMT-P

Completed BS in Biology from Loyola Marymount University. Completed paramedic school at Houston Community College and trained with the Houston Fire Department. Paramedic in Houston, Texas and Galveston, Texas. University of Houston College of Pharmacy (MS in Pharmacology), University of Texas Medical Branch School of Medicine – (MD, Anesthesiology Residency)
Trauma Anesthesiology Fellowship – University of Maryland Shock Trauma Center
Currently Assistant Professor of Anesthesiology at University of Maryland School of Medicine and Attending Trauma Anesthesiologist – R Adams Cowley Shock Trauma Center, Baltimore, MD. Director of Education, Division of Trauma Anesthesiology, R Adams Cowley Shock Trauma Center. Medical Director, Maryland Fire&Rescue Institute. Instructor for Maryland State Police Aviation Command; Flight Physician, Tactical Physician

More Posts

‘Grounded’ Care

Tags: , , , , , , , , , ,


Visualizing the airway in a burn patient

By Marvin Wayne, MD, FACEP, FAAEM

Airway management is a basic and essential skill of anyone caring for an injured or a seriously ill patient. Although many patients can be managed with a non-invasive airway, many benefit from endotracheal intubation.

Much has been written about the hazards of endotracheal intubation, even in this latter patient group. Paralytics have been suggested, and utilized, by some ground and air EMS systems, but concern has arisen over the ability of crews to achieve effective intubation even with paralytics.

One study, for example, showed esophageal intubation rates for all patients as high as 25%.(1) The challenge for prehospital advanced life support (ALS) providers, then, is achieving a balance between the need for intubation and safely achieving that intubation.

Even in the most controlled circumstances, endotracheal intubation can be challenging. Although the addition of routine end-tidal CO2 (EtCO2) monitoring has reduced the incidence of esophageal intubation, it does not reduce the difficulty of the prehospital intubation process. In the field, poor lighting conditions, bad weather, the physical location of the patient, injuries to the neck and spine, and variations in skill levels of the operators contribute to that difficulty. But new technology may be able to provide some, if not all, of the solution to that dichotomy.(2)

The goal of any new airway technology should be to reduce multiple attempts at intubation, as well as prevent dental, mouth and airway trauma, desaturation, intracranial hypertension, pneumothorax, pulmonary aspiration and even iatrogenic death from an unrecognized esophageal placement.(2)

The Advent of Video Laryngoscopy
For many years, direct laryngoscopy (DL) has been the gold standard by which to achieve intubation, performed with either curved or straight laryngoscope blades. However, DL often yields surprisingly poor laryngeal views. Alternatives have been explored, but most have proved to be difficult to master, time consuming, unreliable and costly. Even rigid fiber-optic laryngoscopes—the technology on which “modern” DL is based—hasn’t been widely used, despite its advantages. What has been needed is a device that provides a full view of the glottic airway during laryngoscopy and is easy to learn and master by medical personnel who may or may not frequently perform intubations.

A significant advance took place in this realm when the video laryngoscope (VL) was developed for use in the surgical suite. These devices have a camera lens incorporated into the handle or blade, allowing the image of the larynx/glottis to be displayed on a monitor that’s either directly attached to, or separate from, the blade/camera system. The ability to see the larynx while intubating, even in the most difficult patients, as well as being able to use the monitor as a teaching tool, are recognized as important advancements in airway management.

Although many of these devices (i.e., McGrath Series 5 from LMA North America, TruView from Truphatek, Storz DCI, AWS-S100 from PENTAX Medical Co., Video Macintosh Intubating Laryngoscope System from Volpi AG and GlideScope® from Verathon Medical®) have proved their worth in the hospital setting, a new design was necessary for use in the prehospital environment. This new device would have to be rugged, small and easy to manipulate when working in difficult field conditions.

Currently, the only product on the market that we believe meets all of the criteria for
use in the prehospital environment is the compact GlideScope Ranger.

The Ranger has a digital camera lens incorporated into the center (versus the tip) of its specialized blade, which allows a wider view of the vocal cords on its monitor. A unique anti-fogging technology provides an unobstructed view of the larynx throughout the entire process of tube placement, a feature that’s especially valuable during emergency intubation. It weighs less than 2 lbs. and is engineered to be dependable in a variety of challenging field conditions, including very high or low temperatures, high humidity, and high altitude.

The Ranger is powered by a rechargeable lithium battery, which provides a minimum of 90 minutes of continuous use. A rigid stylet aids in the control of the endotracheal tube (ETT) as it enters the larynx. The blade has a 60º curvature in the midline to match anatomical alignment, so it doesn’t require a “line of sight” for a good view. The high-resolution color display monitor provides a clear picture of the larynx and vocal cords even in bright light, which, again, transforms it into a valuable teaching tool.

There appear to be special benefits to the GlideScope Ranger for trauma patients with limited mouth opening or in cervical immobilization.(3) Very little force is required to expose the glottic opening with the blade so manipulation of the head and neck is reduced. It also functions well in situations where blood or other fluids are present, in mildly obese patients, and because direct visualization of the glottis is unnecessary during intubation, the GlideScope Ranger is less stimulating, an advantage for use in semi-awake patients.

A New Technique
The manner in which tracheal intubation is performed with the GlideScope is unique to its design. The handle is held in the left hand in the same way that one would hold a standard laryngoscope, while the blade is inserted between the teeth under direct vision. It’s important to start out in the midline of the tongue and to stay on the midline. (There’s no need to sweep the tongue out of the way, as is usually the practice with conventional laryngoscopes.)

When the uniquely curved blade passes the teeth, the clinician can now follow the landmarks on the video monitor proceed to the larynx. Identifying the glottis is generally easy. The only technical difficulty with the GlideScope may be guiding the ETT toward the image of the glottis seen on the screen. This difficulty is encountered because the camera is directed (by design) at a 60º angle.

The manufacturer recommends bending the ET tube to conform to the shape of the blade for a gentle curve of 60º. Still, the angle by which one inserts the tube is quite steep. A special stylet developed to lessen the difficulty of passing the tube into the trachea is available, but if advancing the tube presents a problem, withdrawing the GlideScope 1–2 cm will allow the larynx to drop down and reduce the angle required to insert it correctly.

The main limitation of the GlideScope is that there may be a physical resistance in the advancement of the ET tube; with a little practice this limitation is easily overcome. But once familiar with the steep angle of approach, the device is extremely easy to handle.

Case Reports
The following are examples from Whatcom (Wash.) Medic One of the type of cases in which the GlideScope Ranger may be extremely useful.

Case 1: EMS responded to a conscious 57-year-old female, a victim of a fire that started in her home. She had second-degree burns on her legs, buttocks and thighs greater than 30% of her body. She had redness of her face, but no obvious singeing of nares. There were questionable particulates in her oral cavity, but no voice change. Pulse oximetry was 93% on room air, rising to 95% on oxygen given by non-rebreather (NRB) mask. The patient had a history of smoking one pack per day. Respiratory rate was 30 but appeared unlabored. Blood pressure was 130/90, heart rate was 110. She was awake and talking.

Because she was 25 miles from a community hospital and 100 miles from a burn center, and although a major airway burn was not expected, it was elected to provide rapid sequence intubation (RSI) as a precaution prior to helicopter transport to the burn center. RSI was conducted, and the GlideScope Ranger was used to visualize the airway.

Surprisingly, the crew found she had soot in her pyriform sinuses, edema of her glottic opening and significant erythema of the entire region. The GlideScope made possible a quick (18 seconds) and easy intubation, and the video monitor provided an excellent teaching opportunity the prehospital personnel involved. In addition to direct visualization, EtCO2 further confirmed correct tube placement.

Case 2: EMS responded to a 60-year-old male in severe respiratory distress. He was in the bedroom of a manufactured home. He suffered from severe Pickwickian syndrome related to morbid obesity, and had a body mass index (BMI) of 43. (His weight was approximately 656 lbs).

He was obtundent and had a pulse ox of 85%. Blood pressure could not be obtained in the patient’s current position, and moving the patient would require assistance that was not available at the time. His respiratory rate was 40, shallow and labored. Oxygen by NRB mask did not improve his condition.

In light of further deterioration, intubation was the only alternative. However, his BMI and body habitus were going to make it a difficult intubation. He was sedated with midazolam and, using the Ranger, was intubated within 26 seconds. Despite limited mouth opening and a difficult position, tube passage was assured via excellent visualization of his vocal chords.

Case 3: EMS responded to a 67-year-old male in cardiac arrest found in an alley behind a tavern. It was 2 a.m. and raining, and he was difficult to get to because vehicle access was blocked by construction in the area. The first responding basic life support (BLS) unit started CPR with bag-mask ventilation (BMV) performed with extreme difficulty.

The patient had vomited copious amounts of stomach contents. The AED showed that no shock was indicated. After suctioning the oral cavity, intubation was performed with the Ranger in 33 seconds. Tube placement was confirmed by direct visualization on the GlideScope monitor and EtCO2. The patient, who had probably sustained a primary respiratory arrest, was successfully resuscitated.

Case 4: EMS responded to a car struck by a semitruck at high speed. The driver of the car was trapped in the vehicle and had significant craniofacial trauma. His airway was compromised, and he had agonal respiration. To extricate him, extensive rescue operations were required.

A paramedic was able to intubate the patient from the open windshield using a Ranger with the blade of the laryngoscope reversed. It took two attempts and 42 seconds to place the tube, with suctioning required after the first attempt. Confirmation of tube placement was done via direct visualization on the GlideScope monitor and EtCO2.

These case reports demonstrate the capabilities of a video laryngoscope, now available to EMS personnel, in performing emergency intubation. In the first case, without video visualization it would have been difficult to diagnose the glottic swelling that was unsuspected on initial examination. In the second case, this high-BMI patient with complex anatomy might not have been able to have any airway achieved. In the third, a dark night, aspiration and other factors made any airway extremely difficult. And in the fourth, it’s unlikely the intubation could have taken place at all until the patient was extricated from the vehicle.

The ability to successfully intubate critical patients in the field, especially those who present with difficult airways for a variety of reasons, is an important advancement in emergency airway management.

The Impact on Prehospital Care
The potential impact of video laryngoscopy on prehospital medicine may be significant, especially for ground services that are often faced with difficult airways and air medical personnel who must work in tight quarters while airborne.

As previously mentioned, field intubations are by definition fraught with potential complications, such as esophageal intubation, pneumothorax, reduced ventilation and oxygenation, and pulmonary aspiration.(2) Because of the ability to visualize the airway without distortion from fogging to, in effect, “see around the corner,” many of these complications can be avoided.

One study looked at Cormack-Lehane ratings (Grades 1–1V) of those obtained with the GlideScope in 15 patients with cervical collars.(4) The Cormack grading in 14 of the 15 patients (93%) was reduced by one when using the GlideScope. Five Grade I1 patients became Grade 1 using the GlideScope. The average time of intubation with the GlideScope was 38 seconds without complications, including any damage to the teeth. This improvement in visualization of the glottis during intubation is a major factor in the conclusion of some that direct laryngoscopy for emergency intubation will become a relic.(2,3)

The GlideScope has also become the method of choice for many in training of airway management.(5) Currently, Whatcom Medic One is conducting a crossover study of video camera-assisted intubation versus traditional laryngoscopy. Although preliminary data is encouraging, many questions remain to be answered. These include cost versus benefit and skill maintenance of the traditional technique when a camera system isn’t available. Time and the marketplace, we believe, will help answer those questions. However, a new era of airway management may soon be on all of our horizons.

References
1. Katz SJ, Falk JL: “Misplaced endotracheal tubes by paramedics in an urban emergency medical services system.” Annals of Emergency Medicine. 37(1):32–37, 2001.
2. Rao BK, Singh VK, Ray Sumit, et al: “Airway management in trauma.” Indian Journal of Critical Care Medicine. 8(2): 98–105, 2004.
3. Rose DK, Cohen MM: “The airway: Problems and predictions in 18,500 patients.” Canadian Journal of Anaesthesia. 41(5 pt 1):372–383, 1994.
4. Sakles J: “The GlideScope Video Laryngoscope: A practical guide to the future of airway management.” Emergency Medicine and Critical Care Review. 2(1):34–35, 2006.
5. Agrò F, Barzoi G, Montecchia F: “Tracheal intubation using a Macintosh laryngoscope or a GlideScope in 15 patients with cervical spine immobilization.” British Journal of Anaesthesia. 90(5):705–706, 2003.
6. Rai MR, Dering A, Verghese C: “The GlideScope System: A clinical assessment of performance.” Anaesthesia 60(1):60–64, 2005.

Disclosure: The author has received no monetary support from Verathon Inc. His EMS system, Bellingham/Whatcom County, Wash., has received support from Verathon in the form of four video laryngoscopes for evaluation and research purposes.

This article was originally published in The Perfect View.

Post to Twitter


EMS Airway Clinic is a new site offering best practices in airway management and education for EMS professionals and educators, featuring:
  • • Regular articles by Charlie Eisele, Flight Paramedic, retired First Sergeant with the Maryland State Police Aviation Command, and co-founder of the Advanced Airway Course at EMS Today
  • • Case studies, how-to videos and podcasts
  • • The "Airway Funnies" from popular EMS cartoonist Steve Berry
  • • The latest news, features and educational content on prehospital airway management
  • Learn more about EMS Airway Clinic

    Like Us on Facebook

    Featured Airway Products

    Providing emergency patient care on the ground or in the air is complex and challenging. That's why the tools used by paramedics and EMTs must be adaptable in a constantly changing clinical situation — quickly operational, rugged and easy to use. Learn more about EMS airway management.

    GlideScope Ranger

    The GlideScope Ranger video laryngoscope delivers consistently clear airway views enabling faster intubations in EMS settings. Available in reusable or single-use configurations.

    See more products …

    GlideScope Cobalt AVL

    GlideScope Cobalt AVL

    The GlideScope Cobalt AVL video laryngoscope offers airway views in DVD-clarity, along with real-time recording. On its own or when combined with the GlideScope Direct intubation trainer, the Cobalt AVL is an ideal tool to facilitate instruction of laryngoscopy.

    See more products …

    GlideScope AVL Reusable

    GlideScope Cobalt AVL

    The GlideScope AVL Reusable video laryngoscope offers airway views in DVD-clarity, along with real-time recording. On its own or when combined with the GlideScope Direct intubation trainer, the AVL is an ideal tool to facilitate instruction of laryngoscopy.

    See more products …

    Featuring Recent Posts WordPress Widget development by YD