Tag Archive | "airway management"

When the Primary Assessment Requires Priority Care


The focus of EMS remains bringing the severely injured trauma patient and physician together as quickly as possible. (Photo: Mark C. Ide)

She never saw the truck. She had just dropped the kids off at school and was hoping to run some errands before she had to be at work. She edged her Escort out of the school parking lot to make a left turn onto the four-lane, trying to see around the truck parked on the northbound shoulder. She pulled out, and an F-150 impacted the driver’s door on the Escort. The collision was over in micro-seconds, with both vehicles coming to rest in the southbound lane.

Start the clock.

’60 Precious Minutes’
The “Golden Hour” was first described by R Adams Cowley, MD, at the University of Maryland Medical Center in Baltimore.1 From his personal experiences and observations in post-World War II Europe, and then in Baltimore in the 1960s, Dr. Cowley recognized that the sooner trauma patients reached definitive care—particularly if they arrived within 60 minutes of being injured—the better their chance of survival.

Field hospitals, MASH units and medevac helicopters in the Korean and Vietnam Wars contributed to increasing survival rates. Improvements in medications, techniques and instruments were key to survival, but none of these were of any value if the patient remained separated from the surgeon.

Over the years, we’ve debated whether the Golden Hour is actually 60 minutes, but Dr. Cowley’s concept remains true. Thirty-eight years after Maryland State Police Helicopter 1 picked up its first patient on Falls Road in Baltimore County and delivered him to Dr. Cowley’s team, the focus of EMS remains bringing the severely injured trauma patient and physician together as quickly as possible.

In this effort, we’ve gone from “load and go” to “stay and play” and back again. The ideal level of street medicine versus scene time remains somewhere in the middle. Time spent on scene changes each year with the advent of new tools and techniques and the results of valid studies.

Our job in EMS is threefold: 1) get to the patient quickly, 2) fix what we can fix and 3) quickly get the patient to the right hospital. Anything we can do to compress each of these time periods is good for the patient. We’ve known this in the traumatically injured, and now we use it for STEMI and stroke patients; more are sure to follow.

At 12 Minutes
She was unconscious and unresponsive when the medic unit arrived. Her head slumped to the side and frothy blood came from her mouth with each shallow breath. While Rescue Squad 7 worked to free her, the medics brought her head into neutral alignment and tried to open her airway. With a clenched jaw and obvious facial fractures, both an oropharyngeal airway (OPA) and naso­pharyngeal airway (NPA) were out of the question. Working together, the medics used a bag-valve mask, suction and cricoid pressure to optimize oxygenation and ventilation.

LOC: Unconscious; grimace to sternal rub with an occasional moan; GCS 6. Airway: Compromised by clenched jaw, poor gag reflex, blood in mouth. Breathing: Respirations shallow and rapid; frothy blood present; breath sounds full on right and slightly diminished on left; crepitus on left. Circulation: Radial pulse strong, regular, rapid; no major external bleeding noted. Vitals: HR 144, RR 42, BP 112/62, SaO2 85%.

It’s About Perfusion
I used to use the term “airway management,” but the words seem to imply our job is done when we successfully get air through the glottis and into the lungs. I tried “respiratory management.” Yes, that’s it; secure an air passage, inflate and deflate the lungs. No, that’s not it either.

I’ve settled, for now at least, on “perfusion management.” Our lifesaving job is to return and maintain our patient’s cellular perfusion, and then get them promptly to the right facility.

How are the Golden Hour and perfusion management related? Without prudent management of both, we fail our patient. Almost every lifesaving intervention we perform has to do with establishing or maintaining cellular perfusion. An AED allows the heart to return to a perfusing rhythm. Allowing the hypotensive patient to breathe on their own instead of paralyzing them encourages blood return to central circulation. Decompressing the chest, stopping bleeding, capturing the airway and ventilating patients with poor oxygen saturation all improves perfusion.

So, in the field, the burden of responsibility is on us. With the critically sick or injured patient, we must look at on-scene interventions with a cynical eye. Does the procedure enhance perfusion? Must it be done now?

Prehospital Intubation—A Good Thing, Sometimes
We’ve all read and heard that paramedics shouldn’t intubate: “It’s a skill better left for those in the hospital.” But field intubation is a good thing. It secures our patient’s airway. It allows us to properly oxygenate and ventilate patients. It’s usually completed swiftly and appropriately.

But field intubation can be a bad thing. When we make poor decisions and fail to execute the skills we were taught, we extend scene time and create hypoxic patients. When we fail to give post-intubation management the proper attention, it leads to unrecognized misplaced tubes, inappropriate ventilation and poor oxygenation.

We intubate patients in the prehospital environment for three primary reasons: 1) establish and maintain an airway, 2) normalize oxygenation, and 3) establish appropriate ventilation.2 Although field intubation can be a good thing for the patient, it’s not always the right thing for them.

So, when do you intubate the patient? When it will make them better or keep them from getting worse. Do you intubate at the scene or during transport? Both. We should intubate when it’s most appropriate. Consider these factors:

  • How sick is your patient? Is the airway patent? What is their level of oxygen saturation? Are they adequately ventilated? Will they survive transport without intubation?
  • What’s your transport time? If scene time exceeds transport time, will the intubation make a difference? Is good BLS and rapid transport a better option?
  • What’s your intubation skill and experience? Do you have the resources and skills necessary? How are you making decisions—with your head or your ego?

If you get the patient to the hospital bagging them to sats of 96% with an OPA in place and no gastric inflation, you’re my perfusion management hero. Ditto if you do it with an ET tube. But if you spend 20 minutes on scene, rooting and digging in a patient’s throat, making multiple intubation attempts and letting their sats drop to 85%, we need to have a talk. “Do what’s best for the patient,” says Maryland State Aeromedical Director Douglas Floccare, MD, “and you can’t go wrong.”2

What if it’s a difficult tube? Some of my colleagues say that the difficult intubation is the typical intubation, and an easy intubation is a gift. They’re right. Anything that precludes our ability to see the cords or pass the tube has been broadly defined as a “difficult laryngoscopy” or “difficult intubation.”3

Studies on the frequency of difficult intubations are almost completely limited to operating room (OR) or intensive care unit (ICU) patients. The number of studies regarding EMS and ED intubations pales drastically in comparison. Those that have been done focus primarily on the rate of undetected esophageal intubations received at EDs and complications associated with intubations done outside the OR.

Until we have studies that focus on difficult intubations in the prehospital arena, we have to rely on these OR and ICU reports. Do the results of these studies reveal poor intubation technique or poor post-intubation management? Are poor intubation outcomes the result of training, technique, tools, experience or conditions? And do these factors negatively affect the time to definitive care?

At 32 Minutes
The helicopter landed as the patient was freed from the car and moved to the medic unit. It was a 42-minute drive to the only hospital in the county or an 18-minute flight to the trauma center. Seemed like an easy choice, but she was now incredibly combative, so much so that the crew could hardly secure her to the backboard let alone safely fly her out.

As the minutes ticked away, the easy choice was becoming a tough decision. Tough, until the senior paramedic on scene was able to get an 18 gauge IV?in the patient’s hand; holding it securely as lidocaine, etomidate and succinylcholine were pushed.

The intubation was performed using a GlideScope® Ranger video laryngoscope, with a clear view on first attempt. Her sats rose to 98% and EtCO2 to 35. She was secured to the board and loaded in the aircraft. As the succinylcholine wore off, the two helicopter paramedics assisted her ventilations enough to maintain high sats, but didn’t over-ventilate her and drive blood from her central circulation.

Now Versus Next
I’m a dinosaur. I look at new technology with a suspicious eye. I see no reason to change for the sake of change. For instance, I finally purchased a PDA cell phone recently, and I realized what everyone seems to have known for years—they’re amazing.

The first time I saw a video laryngoscope, I felt much the same way I initially did about the PDA: That’s a lot of money for a camera and some lights. I also thought, I’ve done just fine with my bent metal stick for the past two decades, why should I change now? However, having used the device, I know why. Because it’s a better way to deliver patient care, with less opportunity for physical trauma to the patient, quicker visualization of the glottis and enhanced verification of endotracheal tube placement.

Straight or curved direct laryngoscopy blades are de­signed to move the anatomy to obtain a line-of-sight glottic view. Head-neck manipulation, tongue displacement, direct contact with laryngeal structures, and impacting teeth are all opportunities to injure a patient.

Unlike classic laryngoscope blades, video laryngoscope blades are shaped to match the pharyngeal anatomy. The acute blade angle allows the blade’s tip (and camera) to follow the patient’s anatomy to view the glottis. Multiple studies have found that 20­–40 lbs. of force is required during direct laryngoscopy, and it takes about 45 lbs. of pressure to fracture a tooth during laryngoscopy.4,5 My own, purely subjective, experience with video laryngoscopy is that much less force is needed to obtain a glottic view. I’d like to see studies that validate or dispute my experience.

If you’ve ever had to do a belly flop on the ground to see the cords of a patient, you’ll appreciate video laryngoscopy. The blade goes in the patient’s mouth and the video monitor is placed where you can see it. This makes visualization easier in a moving ambulance or helicopter, and has the potential to save scene time by allowing you to intubate easier during transport. The image on the monitor is larger than the view afforded by direct visualization. The clear detail provided on the screen allows for confident and quick landmark identification.

So, what’s the role of video laryngoscopy in prehospital medicine? Time for my predictions. It will become the standard of care, just like AEDs and 12-lead monitors. When our EMS children visit us in nursing homes, we’ll tell them tales of wasting precious minutes lying on the floor of someone’s home, using a light bulb and a metal stick to intubate patients.

At 65 Minutes
The aircraft settled onto the roof, and its rotors slowed to flight idle. She was moved to the waiting stretcher and then down the elevator to the trauma room. Masked, gowned and gloved, the trauma team swarmed around her—65 minutes from impact to surgeon.

 

Conclusion
For video laryngoscopy to truly enter the world of prehospital medicine, a paradigm shift must occur—a shift away from direct visualization. Cliff Boehm, MD, an attending anesthesiologist and assistant professor of trauma anesthesiology at the R Adams Cowley Shock Trauma Center, describes how it worked in his department: “There used to be two camps when direct laryngoscopy failed: the Bullard (rigid fiber-optic laryngoscope) and the LMA (laryngeal mask airway). Now there’s pretty much one camp—video laryngoscopy.”

Boehm adds that when video laryngoscopy first appeared as an anesthesia tool in his department, “that camera thing” was used when all other means failed. He and his colleagues now routinely use their GlideScope units as first-line tools, not just as a backup.6

As video laryngoscopy continues to evolve, I’d like to see the ability to digitally record images for QA, patient records and education. I’d like to see the camera and light in a standalone handle, and the image beamed to the multi-function display on our vital signs monitor. Better yet, maybe we could have it recorded on our monitor and also transmitted to the heads-up display on our safety glasses, so we can view the glottis and simultaneously see the patient’s heart rate and oxygen saturation.
We live at an incredibly exciting time in history, especially in medicine. Da Vinci robotic surgery, STEMI intervention, laparoscopic surgery and a multitude of other tools and procedures are developed each week. Video laryngoscopy is one of them. It’s a great tool for us in medicine, and it’s an important tool for our patients.

Although I’m not ready to put my 4 Mac or 3 Miller on eBay, I can’t wait to see what awaits us.

Disclosure: The author has received no monetary support from Verathon Inc. He has received support from Verathon in the form of a video laryngoscope for evaluation and research purposes.

References

  1. Franklin F, Doelp A: Shock-Trauma. St. Martin’s Press: New York City, N.Y., 1980.
  2. Douglas Floccare, MD, Maryland State Aeromedical Director. Personal communication, 2004–2008.
  3. American Society of Anesthesiologists Task Force on Management of the Difficult Airway: “Practice guidelines for management of the difficult airway: An updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway.” Anesthesiology. 98(5):1269–1277, 2003.
  4. Givol N, Gershtansky Y, Halamish-Shani T, et al: “Perianesthetic dental injuries: Analysis of incident reports.” Journal of Clinical Anesthesia. 16(3):173–176, 2004.
  5. Ghabash MB, Matta MS, Mehanna CB: “Prevention of dental trauma during endotracheal intubation.” Anesthesia and Analgesia. 84(1):230–231, 1997.
  6. Clifford Boehm, MD, Assistant Professor of Trauma Anesthesiology, R Adams Cowley Shock Trauma Center. Personal communication, 2008.

Reprinted from JEMS Vol. 33, Issue 9 with the permission of Elsevier Inc., copyright 2008. For more information or to subscribe, visit www.jems.com.

Post to Twitter

Charlie Eisele, BS, NREMT-P

Charlie Eisele, BS, NREMT-P has been active in EMS since 1975. After 22 years of service, he recently retired from the Maryland State Police, Aviation Command where he served as a State Trooper, flight paramedic, instructor, flight operations supervisor, director of training, and tactical paramedic. For over 25 years, Charlie has been a collegiate level educator and curriculum developer. He has served numerous programs including the University of Maryland, and its R Adams Cowley Shock Trauma Center, College of Southern Maryland, Grand Canyon National Park, Marine Corps Base Quantico, Virginia Department of Fire Programs, and Maryland State Police. Charlie is the co-developer of the internationally delivered advanced airway program at the R Adams Cowley Shock Trauma Center. He is the Airway and Cadaver Lab Course manager for the University of Maryland critical care emergency medical transport program. He’s the co-developer of the EMS Today airway and cadaver lab program. Charlie has been recruited nationally to provide airway management curriculum and education for a variety of private, federal, state and local organization. Charlie is an Eagle Scout and a published author. He serves on the Journal of Emergency Medical Services Editorial Board and is a member of the program board for the EMS Today Conference & Exposition.

More Posts

Always Protect the Tube


Always protect the tube

Post to Twitter

Airway Blessings


Gesundheit!

Post to Twitter

Airway Algorithms


Airway Management AlgorithmIn my last EMS Airway Clinic article, “How to Make the Difficult Airway Less Difficult,” we looked at situations that can make airway management difficult; one of those situations was not having a strategy. Today, I’ll share with you the airway algorithm that has helped me over the years, and I want to give you some tips for building your own algorithm.

As professionals, we should know our protocols. We should be able to deliver quality patient care without looking up the details. I believe these ambitions, but folks, I’m just not one of those medics who remembers every nook and cranny of the protocol book. My worst example is the Glasgow Coma Scale. What a great tool to objectively record the conscious state of a patient. Let’s see, I know that if I’m dead for two weeks, I get a three, and I’m a 13 or a 14 when I get up in the morning. Otherwise, I’ve got to either look it up or use a memory aid, such as an algorithm.

An algorithm is “a step by step procedure for solving a problem.”(1) Medical algorithms help us deliver better patient care. They standardize treatment therapies, so we collectively deliver similar care in similar situations. They help us successfully navigate low-incidence, high-consequence incidents. They reduce medical errors. In EMS, we typically use two types of algorithms: flowcharts and checklists.

Flow charts guide us through a series of “if-then” situations that help us respond quickly and effectively in critical situations; if the patient is in ventricular fibrillation, then defibrillate them. A checklist is a memory aid to make sure we don’t forget something, especially in a situation that we don’t face regularly. A checklist for rapid sequence intubation (RSI) helps us remember to check patients for all contraindications.

I’ve found several characteristics that are commonly found in good emergency airway management algorithms. First and foremost, the algorithm must be based on your world—your patient population, distance to hospitals, available equipment and staff, as well as your own training, experience and confidence. It’s convenient to borrow an algorithm, but it won’t work if it doesn’t fit your operational environment. Using a hospital-based airway algorithm just doesn’t work in the parking lot of the Piggly Wiggly. A second feature of a good algorithm is comfort. If it’s awkward and unfamiliar, then you won’t use it well if at all. You make it comfortable by practicing and making adjustments. Finally, a good algorithm has to be systematic. It must logically and easily flow from one step to the next.

My Algorithm
I’ve used my current airway algorithm for about 15 years. Now, I didn’t just sit down at the kitchen table one morning and put it on paper. I started out using someone else’s algorithm, and then I gradually changed it to fit my needs. My algorithm will always be a work in progress. When I started, I didn’t consider video laryngoscopy or a bougie. Now, they both sit in a place of prominence.

Every patient receives oxygen at every possible moment. Do everything you can to wash out all of the nitrogen in the patient’s lungs and replace it with oxygen. A hyper-oxygenated patient will tolerate short periods of apnea better than a patient with low oxygenation.

Every EMS provider must be proficient at bag-valve-mask (BVM) ventilation. I think BVM ventilation is so important that it’s mentioned six times in my algorithm. I start with BVM to get a feel for compliance and how well the patient responds. Some folks do quite well with a little oxygen, an oral airway and gentle BVM ventilation. If my attempts at laryngoscopy or an alternative airway are unsuccessful, I reach right for the BVM.

Should we intubate?

View Results

Loading ... Loading ...

I’ve found that more than two attempts at laryngoscopy is usually a waste of a patient’s precious time because chances of success decrease with each attempt. I prepare to successfully place an endotracheal tube on my first attempt. I do everything to make my first attempt my best attempt. I have a second laryngoscopy attempt in the algorithm as an opportunity to make a course correction if I encounter an unanticipated condition, a technique or equipment failure, or I fail to prepare well enough.

I used to have supra-glottic airway placement as steps five and six in the algorithm until a colleague pointed out his success with nasal-tracheal intubation and digital intubation. Out of respect for Steve, I’ve changed these steps to use of an alternative airway. Similar to my experiences with multiple attempts at laryngoscopy, I’ve found that more than two attempts with an alternative airway become futile and detrimental to the patient. If you displace the tongue sufficiently and use adequate lubricant, first-pass success is likely. I’ve included a second attempt in the algorithm to give myself the opportunity to address an unexpected condition or a misstep in my preparation.

Step seven is our familiar friend, BVM ventilation and a quick ride to the hospital.

How long should you spend on each intubation attempt? Wow, that’s a loaded question. I wish I could give you a solid number backed up with a stack of studies, but I can’t. The time spent depends on the patient’s physiological condition, the level of difficulty you experience and your skill level. Many of us were taught to spend no more than 30seconds on an intubation attempt, and I think that’s a pretty safe number. From the moment you insert the blade into the patient’s mouth, it should take you about 10 seconds to locate the glottic structures, and then no more than another 10 seconds or so to place the tube, inflate the cuff and withdraw the stylette. The remaining 10 seconds are a pad for handling any surprises you might find.

I’d like to hear your thoughts on this. How much time do you think we should spend securing an airway?

Your Turn
Feel free to use this algorithm as template from which you build your own. A word of caution; an algorithm is one tool. It isn’t a replacement for sound clinical judgment. Please let me know how you fare in creating your own airway algorithm. In my next EMS Airway Clinic article, I’ll talk about some of the things you can do to improve your first pass success rate.

Be safe my friends.
Charlie

References
1. Merriam-Webster. www.m-m.com/dictionary/algorithm.

Post to Twitter

Charlie Eisele, BS, NREMT-P

Charlie Eisele, BS, NREMT-P has been active in EMS since 1975. After 22 years of service, he recently retired from the Maryland State Police, Aviation Command where he served as a State Trooper, flight paramedic, instructor, flight operations supervisor, director of training, and tactical paramedic. For over 25 years, Charlie has been a collegiate level educator and curriculum developer. He has served numerous programs including the University of Maryland, and its R Adams Cowley Shock Trauma Center, College of Southern Maryland, Grand Canyon National Park, Marine Corps Base Quantico, Virginia Department of Fire Programs, and Maryland State Police. Charlie is the co-developer of the internationally delivered advanced airway program at the R Adams Cowley Shock Trauma Center. He is the Airway and Cadaver Lab Course manager for the University of Maryland critical care emergency medical transport program. He’s the co-developer of the EMS Today airway and cadaver lab program. Charlie has been recruited nationally to provide airway management curriculum and education for a variety of private, federal, state and local organization. Charlie is an Eagle Scout and a published author. He serves on the Journal of Emergency Medical Services Editorial Board and is a member of the program board for the EMS Today Conference & Exposition.

More Posts

How to Make the Difficult Airway Less Difficult


Training, experience and planning can turn a difficult airway into just another day at the office. Photo Verathon Medical

We were on a tactical-EMS (TEMS) operation in February in the mountains of western Maryland. Several of us lamented, whined actually, about the cold, wet weather. Our TEMS team leader, Mark Gibbons, set us straight, “There’s no such thing as bad weather, just those ill prepared for current conditions.”

My friend’s statement easily applies to most difficulties we encounter in life. Tasks that we find troublesome are usually hard to manage because we are unprepared or conditions are unexpected. The same applies to airways we label as difficult.

In previous articles on airway anatomy, I discussed how understanding the anatomy helps us make better decisions and improves our level of success. The same paradigm applies to a “difficult airway.” As medical practitioners, the more clearly we understand why an airway is difficult, the less difficult it becomes to manage.

From Difficult to Everyday
Although there’s little you can do about your patient’s anatomy and physiologic condition, you still have to deal with it. I used to believe that I chose the laryngoscope blade for my patient. I was wrong; the patient picks the blade. I had to learn to perform a good patient assessment and really understand my patient’s needs. A good assessment only takes about a minute or so, but it’s a lot more than just glancing at the patient’s face. How far can you open the patient’s mouth? What’s the length of the jaw? Is the neck mobile? A short neck, short jaw and receding mandible calls for a straight blade, not a 3 Mac just because I like a curved blade. If you don’t listen to your patient, you’ll create a difficult airway.

Another thing we can’t change is our working environment. How many times have you used the “belly flop” intubation position on the floor? Sure, you can always move the patient from the bathroom to the living room, but it’s still a tough place to work. If you want to turn a tough position into a difficult airway, then never prepare yourself to work in that environment. The Maryland State Police Department runs a program called the Airway Rodeo. The final session is a scenario-based competition between teams. We place manikins in every position you can imagine: secured to a backboard, sitting up, even duct-taped to the underside of a table. The idea is to challenge our students to intubate in the most awkward, absurd positions we can envision so when they’re faced with something similar in the field, the patient position doesn’t make the situation a difficult airway.

Training and experience are two factors that can turn a difficult airway into just another day at the office. Of course, it works the other way too. The great part is that you have complete control over both of these factors. There’s always time to train. Commit just 30 minutes a day to your profession. Read an article. Listen to a podcast. Review a peer’s patient care report. Talk to someone who’s been there, done that. Case reviews and scenario-based training are the best way to become experienced before you’re faced with a real patient. Don’t let a lack of training and experience create a difficult airway situation.

For the past 10 years, Dr. Richard Dutton, trauma anesthesiologist at the R Adams Cowley Shock Trauma Center, has been a mentor and friend. His view on equipment has made a huge impression on me. Our equipment should be simple, we have to know how to use our tools, and our equipment must be readily at hand. Now, I’m a big widget guy. But we all know the chances of something actually working in an emergency is inversely proportional to the number of moving parts. It’s OK to have an airway gadget with a lot of parts as long as you’re prepared for them to fail and you’re prepared to deal with it. Know your equipment and have it with you. As Dr. Dutton is fond of saying, “If it’s not within three feet of you, it may as well be on Mars.” You’re a professional; don’t allow equipment issues to create a difficult airway situation.

Conclusion
Failing to have a plan, failing to understand a plan and failing to follow a plan have led many a good medical professional down long, torturous roads. My gosh, folks! We’ve got more algorithms than I can count, so I know you’ve got one for managing a patient’s airway. Know it and use it. Airway management, and especially endotracheal intubation, is a high-consequence therapy. Your plan should be simple to follow, flexible and well practiced. At a minimum, it should provide strategies based on patient assessment, environmental conditions, distance to a hospital and available equipment. A task force of the American Society of Anesthesiologists recognized this in 1992 and said it best in their 2002 update, “ … the use of specific strategies facilitates the intubation of the difficult airway.”(1) Don’t create a difficult airway by failing to plan.

Situational awareness is the proper alignment of your perception of reality with reality.(2) In one study, the U.S. Coast Guard found the lack of situational awareness accounted for 54% of medium- and high-severity towing vessel incidents.(3) Every profession has a book full of examples of adverse incidents that occurred because of poor situational awareness. Airway management is no different.

I arrived as the second paramedic at motor vehicle crash. The patient was in the ambulance, so I hopped in the side door. I saw a used endotracheal tube on the floor, a bloody laryngoscope blade and the crew bagging the patient. I heard them say, “He’s clinched. You need to RSI him.” I started my assessment and found the patient’s “clinched jaw” was held securely in place with a tight-fitting cervical collar. Nonchalantly, I opened the front of the cervical collar and found a non-clinched, highly mobile jaw. What was a difficult airway turned out to be a case of poor situational awareness.

Those of you who have sat in on my lectures know I don’t think difficult airways are as common or as bad as we’re sometimes led to believe. I think that, for the most part, we control our destiny. Although you can’t control a patient’s anatomy or some of the situations in which we work, you’re at the helm in regards to training, experience, equipment, strategies and situational awareness. If I may be so bold as to modify Mark Gibbons’ quote, I would say, “there are no difficult airways, only providers ill prepared for current conditions.”

Be safe my friends.
charlie

References
1. American Society of Anethesiologists. Practice guidelines for management of the difficult airway: An updated report by the american society of anesthesiologists task force on management of the difficult airway. Anesthesiology. 2003; 98:1269–1277.
2. Personal communication with Commander Curtis Ott, USCG (ret). June 2008.
3. Crew Endurance Management, USCG, 2008, p 1

Post to Twitter

Charlie Eisele, BS, NREMT-P

Charlie Eisele, BS, NREMT-P has been active in EMS since 1975. After 22 years of service, he recently retired from the Maryland State Police, Aviation Command where he served as a State Trooper, flight paramedic, instructor, flight operations supervisor, director of training, and tactical paramedic. For over 25 years, Charlie has been a collegiate level educator and curriculum developer. He has served numerous programs including the University of Maryland, and its R Adams Cowley Shock Trauma Center, College of Southern Maryland, Grand Canyon National Park, Marine Corps Base Quantico, Virginia Department of Fire Programs, and Maryland State Police. Charlie is the co-developer of the internationally delivered advanced airway program at the R Adams Cowley Shock Trauma Center. He is the Airway and Cadaver Lab Course manager for the University of Maryland critical care emergency medical transport program. He’s the co-developer of the EMS Today airway and cadaver lab program. Charlie has been recruited nationally to provide airway management curriculum and education for a variety of private, federal, state and local organization. Charlie is an Eagle Scout and a published author. He serves on the Journal of Emergency Medical Services Editorial Board and is a member of the program board for the EMS Today Conference & Exposition.

More Posts


EMS Airway Clinic is a new site offering best practices in airway management and education for EMS professionals and educators, featuring:
  • • Regular articles by Charlie Eisele, Flight Paramedic, retired First Sergeant with the Maryland State Police Aviation Command, and co-founder of the Advanced Airway Course at EMS Today
  • • Case studies, how-to videos and podcasts
  • • The "Airway Funnies" from popular EMS cartoonist Steve Berry
  • • The latest news, features and educational content on prehospital airway management
  • Learn more about EMS Airway Clinic

    Like Us on Facebook

    Featured Airway Products

    Providing emergency patient care on the ground or in the air is complex and challenging. That's why the tools used by paramedics and EMTs must be adaptable in a constantly changing clinical situation — quickly operational, rugged and easy to use. Learn more about EMS airway management.

    GlideScope Ranger

    The GlideScope Ranger video laryngoscope delivers consistently clear airway views enabling faster intubations in EMS settings. Available in reusable or single-use configurations.

    See more products …

    GlideScope Cobalt AVL

    GlideScope Cobalt AVL

    The GlideScope Cobalt AVL video laryngoscope offers airway views in DVD-clarity, along with real-time recording. On its own or when combined with the GlideScope Direct intubation trainer, the Cobalt AVL is an ideal tool to facilitate instruction of laryngoscopy.

    See more products …

    GlideScope AVL Reusable

    GlideScope Cobalt AVL

    The GlideScope AVL Reusable video laryngoscope offers airway views in DVD-clarity, along with real-time recording. On its own or when combined with the GlideScope Direct intubation trainer, the AVL is an ideal tool to facilitate instruction of laryngoscopy.

    See more products …

    Featuring Recent Posts WordPress Widget development by YD


    Warning: Unknown: write failed: No space left on device (28) in Unknown on line 0

    Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/tmp) in Unknown on line 0